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Introduction 
Numerous studies have associated acute and chronic exposures to high levels of particulate matter (PM10/2.5) with 
health outcomes such as increased hospital admissions, increased respiratory/circulatory symptoms, and decreased 
lung functions. These exposures, which come from a variety of sources such as blowing sand and dust, smoke, 
vapors, and aerosols, are common in many areas throughout the globe where U.S. military personnel are deployed in 
support of our national defense.  

Addressing such health concerns requires an accurate assessment of the small-aerosol-particle concentration near the 
ground—for example, the issue of air pollution and its effects on health. Various networks of ground-based sensors 
provide routine measurements of PM2.5, but their spatial coverage is rather sparse, especially in Third World 
countries. On the other hand, multiple space-borne sensors measure the total aerosol optical depth (AOD), often with 
nearly global daily coverage. However, while we have good global coverage for AOD, it is often not the best proxy 
for the near-surface aerosol concentration. This can be for a variety of reasons, for example, aerosols can be 
transported at high altitudes without being present near the land surface, while still contributing to a high total AOD. 
While there is a growing interest in using satellite data, there is the issue that the currently available satellite data 
products do not provide accurate data on the near-surface PM2.5 abundance that we need for health studies (Hoff and 
Christopher 2009). 

We propose to break through these limitations by bringing together data from multiple sensors and new machine 
learning methodology. We will also be using new methodology that has recently won recognition as a NASA Aura 
mission science highlight and the 2010 IEEE Geoscience and Remote Sensing Society Letters Prize Paper Award. 
This methodology takes into account the cardinally nonlinear relationship between the near-surface abundance of 
PM2.5 and AOD, which is a function of the boundary-layer height, humidity, surface pressure, surface wind speed, 
and surface type. This is a major achievement, as, although we have numerous observations, we do not yet have a 
complete theoretical understanding of this cardinally nonlinear relationship between the near surface abundance of 
PM2.5 and AOD. 

Hypothesis 
The hypothesis of this proposal is that a suite of remote sensing data products on atmospheric aerosols used in their 
meteorological context and processed by machine learning can provide a daily estimate of the global PM2.5 
abundance. This information is of considerable value to Global Health Surveillance (GHS), providing a capability to 
routinely estimate troop deployment exposure to elevated levels of particulate matter (PM) globally, significantly 
contributing to DoD-wide force health protection initiatives. 

Technical Objectives 
The goal of this study is to provide a quantitative understanding of the intrinsically nonlinear, multivariate 
relationship between the abundance of PM2.5 in the atmospheric boundary layer and Remotely Sensed Aerosol 
Optical Depth (AOD) and extinction products. This is encapsulated in a software system that is capable of 
routinely providing a global data product for DoD health applications. As this project nears completion we see 
that we the basis for an operational system to serve the DoD health system. This can provide global coverage and 
therefore has the potential to provide Global Health Surveillance (GHS) with a capability to routinely estimate 
troop deployment exposure to elevated levels of PM globally, significantly contributing to DoD-wide force health 
protection initiatives. 

Realizing our goal required two components. The first is to use the appropriate temporally and spatially varying 
meteorological context of the latest version of each satellite product, as well as in-situ ground truth observations of 
PM2.5 abundance. The precise context of observations is critically important, as there is significant temporal and 
spatial variability in the abundance of PM2.5, so careful attention must be paid to ingesting/fusing the satellite 
observations at both the appropriate time and place.  

The second required component uses nonlinear, nonparametric, multivariate machine learning to address the issues 
for which we do not yet have a complete theoretical description encapsulated in our Numerical Weather Prediction 
(NWP) models. It would obviously be ideal if we had a complete theoretical understanding of the multivariate, 
nonlinear relationship between PM2.5 and AOD, in which case we would gladly dispense with the machine learning. 
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However, as this most desirable state currently eludes us, the array of tools we have for multivariate, nonlinear, 
nonparametric machine learning has proved invaluable to a wide variety of applications and has already won 
significant recognition within NASA. In this study the nonlinear, multivariate issue that we dealt with is the 
multivariate, nonlinear dependence of the abundance of PM2.5 in the atmospheric boundary layer on AOD, humidity, 
temperature, boundary-layer height, surface pressure, wind speed, and surface type. As mentioned earlier, our 
previous work in this area has won wide recognition as ground breaking. 

Method 
NASA has a constellation of satellites flying in close formation called the “A-Train” (Figure 1). Several of these 
satellites host instruments that make a variety of aerosol observations. These instruments include Terra MODIS 
(Remer et al. 2005) and MISR (Kahn et al. 2005), launched in December, 1999; Aqua MODIS, launched in May, 
2002; Aura OMI (Torres et al. 2007), launched in July, 2004; and CALIPSO CALIOP (Mcgill et al. 2007; Winker et 
al. 2007), launched in April, 2006. We also have aerosol observations from SeaWIFS (Hooker and Mcclain 2000), 
launched in August, 1997, on GeoEye's OrbView-2 satellite.  

The aerosol optical depth (AOD), τ, is a measure of the light extinction at a given wavelength by atmospheric 
aerosols, in a vertical column from the earth’s surface up to the top of the atmosphere. Several of the A-Train 
instruments provide a daily global picture of the total aerosol optical depth. For example, MODIS provides the total 
AOD across its swath at a resolution of 10 km; the SeaWIFS resolution is 1.1 km. A new MODIS product at 3 km 
resolution should soon be available. The 3 km product introduces more noise but does capture fine (more urban 
scale) aerosol structure that is missed by the 10 km product. MODIS, OMI, and SeaWIFS provide the total global 
aerosol burden but not how it is distributed vertically, whereas other instruments provide detailed vertical aerosol 
structure but do not provide the contiguous global coverage of MODIS, OMI, and SeaWIFS. For instance, while 
CALIPSO provides corrected backscatter and extinction profiles at a 120 m vertical resolution, at altitudes below 20 
km it does not provide contiguous horizontal coverage. MISR also provides some vertical information for cases with 
higher optical depths and distinct plume boundaries but at a coarser resolution than CALIPSO. The CALIPSO 
observations provide a set of high vertical resolution “curtains” underneath the satellite flight path. The CALIPSO 
curtains span the globe daily; however, there are substantial gaps between these curtains. Since CALIPSO completes 
14.55 orbits per day, at the equator there is a separation of 24.7° in longitude between each successive curtain. 

Relating Aerosol Extinction to PM2.5 Abundance 
The relationship between the PM2.5 abundance at the earth’s surface and the boundary layer optical depth or aerosol 
extinction depends on a variety of factors that change both seasonally and geographically. These factors include the 
humidity, temperature, boundary-layer height, surface pressure, wind speed, and surface type (Liu et al. 2004a; Liu 
et al. 2004b; Hutchison et al. 2005; Gupta et al. 2006; Koelemeijer et al. 2006; Liu et al. 2007a; Liu et al. 2007b; 
Liu et al. 2007c; Pelletier et al. 2007; Gupta and Christopher 2008; Hutchison et al. 2008; Zhang et al. 2009).  

When using a multi-linear analysis of the relationship between the AOD observed by MODIS and PM2.5 it is found 
that better correlations are observed principally over the eastern United States in summer and fall (Zhang et al. 
2009). The southeastern United States has the highest correlation coefficients, at more than 0.6. The southwestern 
United States has the lowest correlation coefficient, at approximately 0.2. Several factors are at work here. One is 
that the entire aerosol loading does not usually reside in the boundary layer; hence, using AOD alone as a proxy for 
PM2.5 will invariably result in significant error. For example, on the West Coast, a significant fraction of the AOD is 
due to smoke events where substantial amounts of aerosol are above the boundary layer. Additional reasons for the 
poor correlation in the southwest may be associated with the humidity and land surface type. In addition, the 
correlation depends on the version of the satellite retrieval. For example, MODIS v5.2.6 AOD retrievals demonstrate 
better correlation with PM2.5 than v4.0.1 retrievals, but they have much less coverage because of the differences in 
the cloud-screening algorithm (Zhang et al. 2009). We address these issues by using a filly non-linear, multivariate, 
non-parametric machine learning approach. 

(Gupta et al. 2006) found that correlation between AOD and PM2.5 increases as the mixing-layer height decreases. 
Larger wind speed can induce high mixing-layer height, which can change the correlation between AOD and PM2.5. 
The relative humidity (RH) can affect the AOD-PM2.5 by altering the optical properties of the aerosols. The higher 
the relative humidity, the larger the portion of light that is scattered, hence the larger AOD (Hoff and Christopher 
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2009).  We address this issue in this study by using the humidity and boundary-layer height contemporaneously with 
each observation used. The humidity comes from the meteorological analyses. The boundary-layer height also 
derives from the meteorological analyses and can be verified with the available LIDAR data. The meteorological 
analyses we use are the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) 
analyses produced by the Goddard Space Flight Center (GSFC) Global Modeling and Assimilation Office (GMAO). 
The correlation between AOD and PM2.5 is also related to the surface pressure and wind speed (Smirnov et al. 1995; 
Lyamani et al. 2006; Choi et al. 2008; Rajeev et al. 2008). We address this issue by using the surface pressure and 
wind speed contemporaneously with each observation. The surface pressure and wind speed also come from the 
meteorological analyses.  
 
Table 1. Training dataset statistics and global 2000-2012 correlation coefficients. 

	
   n	
   R	
   R2	
  
Aqua	
  Deep	
  Blue	
   8,233	
   0.99	
   0.98	
  
Aqua	
  Standard	
   30,298	
   0.99	
   0.98	
  
Terra	
  Deep	
  Blue	
   4,011	
   0.99	
   0.98	
  
Terra	
  Standard	
   19,718	
   0.98	
   0.97	
  

 
Figure 1	
  Validation scatter diagrams showing the performance of the machine-learning algorithm for the two MODIS 
sensors using the standard and Deep Blue algorithms. In each case the x-axis shows the observed abundance of PM2.5 
(µg/cm3) as observed by in-situ instruments. The y-axis shows the abundance of PM2.5 (µg/cm3) estimated by the machine 
learning based on the satellite and meteorological data products. 

 

Aqua Standard, R=0.99, R2=0.98

Terra Standard, R=0.98, R2=0.97

Aqua DeepBlue, R=0.99, R2=0.98

Terra DeepBlue, R=0.99, R2=0.99
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Several studies have sought to overcome this limitation by using satellite-derived Aerosol Optical Depth (AOD) 
with regression and/or numerical models to estimate ground-level PM2.5 within the Earth’s boundary layer. Zhang et 
al. (2009) presented a comprehensive study for the 10 EPA regions across the United States using multi-linear 
regression between the PM2.5 abundance observed by the EPA and the Moderate Resolution Imaging 
Spectroradiometer (MODIS) AOD and a set of meteorological parameters. The best correlations of PM2.5 with AOD 
were observed for the eastern states in summer and fall, with EPA region 4 having a correlation coefficient of more 
than 0.6. The poorest correlations were observed for the southwestern states, with EPA region 9 having a correlation 
coefficient of approximately 0.2. Weber et al. (2010) extended the study of Zhang et al. (2009) for five EPA 
monitoring sites in the Baltimore/Washington DC Metro area by considering AOD from MODIS, the Multi-Angle 
Imaging Spectroradiometer (MISR), and the Geostationary Operational Environmental Satellite (GOES). The 
PM2.5 estimates of Zhang et al. (2011) and Weber et al. (2010) are made available through the Infusing satellite 
Data into Environmental Applications (IDEA) website (http://www.star.nesdis.noaa.gov/smcd/spb/aq/). 

In an elegant study Van Donkelaar et al. (2006) presented a global estimate of the long-term average PM2.5 
concentrations between 2001-2006 using both satellite observations of AOD from MODIS and a global chemical 
transport model to estimate η=PM2.5/AOD. The 3D chemical transport model used was GEOS-Chem. Van 
Donkelaar et al. (2006) found significant spatial agreement with North American PM2.5 measurements (correlation 
coefficient of 0.77) and with non-coincident measurements elsewhere (correlation coefficient of 0.83).  

In this study we have used a proprietary machine learning approach to estimate η=PM2.5/AOD entirely from 
observations. We used PM2.5 observations from the United States, Europe, Africa, Australia and Asia to create a 
comprehensive training dataset spanning more than a decade. We then used this training dataset to estimate η as a 
function of the satellite AOD at multiple wavelengths and all the associated parameters that are available with the 
AOD (such as the angstrom exponent, scattering angle, cloud masks, surface reflectivity, and viewing geometry) and 
the meteorological analyses. Fifty independent trainings were performed using this training dataset, for each of these 
fifty trainings there was a random selection of 66% of the data for use in the training, with 34% of the data left out. 
The statistics shown in Table 1 and Figure 1 is the mean solution for these fifty independent trainings. Very careful 
attention is paid to ensure that the PM2.5 observations and satellite observations are coincident in space and time to 
within a great circle separation of 0.02˚ (approximately 2 km) and a time window of 30 minutes. This is done for the 
standard and Deep Blue retrieval algorithms of MODIS Terra and Aqua. This can be thought of as the global fully 
non-linear multivariate extension to the pioneering work of (Zhang et al., 2009).  

The results of this comprehensive training are shown in the table below. The performance of the approach we have 
used here is substantially better than that of the previous studies. Our worst performance has a correlation coefficient 
of 0.85, which is better than the best performance of the previous studies 0.83 for the non-coincident measurements 
of Van Donkelaar et al. (2006). It should also be noted that our values are global, so include the west coast of the 
United States which, as mentioned above, is typically more challenging to reproduce (Zhang et al., 2009).  

As can be seen from Table 1 and Figure 1, we successfully used machine learning to describe the multivariate 
relationship between PM2.5 and a suite of parameters including AOD. Example PM2.5 distributions are shown in 
Figure 2. These daily distributions can be used to provide the time evolution of PM2.5 exposure for individual 
personnel (e.g. Figure 3).  
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Figure 2. Example distributions of PM2.5 (µg/m3) for March 1, 2012. 
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Figure 3. The Time evolution of PM2.5 can be provided for more than a decade. The example above is for Taiyuan, Shanxi 
province, China. 

 
Key Research Accomplishments and Reportable Outcome 
The key accomplishment of this study has been successfully using machine learning to provide daily global analyses 
of PM2.5 from March 2000 up until the present. This is twice the length of the period we promised in the proposal. 
The fidelity of this analysis (as can be seen from Figure 1 and table 1) is significantly better than that of previous 
studies (Van Donkelaar et al., 2006, Zhang et al., 2009, Zhang et al., 2011). These PM2.5 analyses are of 
considerable value to Global Health Surveillance (GHS), providing a capability to routinely estimate troop 
deployment exposure to elevated levels of particulate matter (PM) globally, significantly contributing to DoD-wide 
force health protection initiatives.  
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